354 research outputs found

    Monte Carlo simulation of baryon and lepton number violating processes at high energies

    Get PDF
    We report results obtained with the first complete event generator for electroweak baryon and lepton number violating interactions at supercolliders. We find that baryon number violation would be very difficult to establish, but lepton number violation can be seen provided at least a few hundred L violating events are available with good electron or muon identification in the energy range 10 GeV to 1 TeV.Comment: 40 Pages uuencoded LaTeX (20 PostScript figures included), Cavendish-HEP-93/6, CERN-TH.7090/9

    CSNL: A cost-sensitive non-linear decision tree algorithm

    Get PDF
    This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification. The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes. The performance of the algorithm is evaluated by applying it to seventeen data sets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes

    Prompt Quark Production by exploding Sphalerons

    Full text link
    Following recent works on production and subsequent explosive decay of QCD sphaleron-like clusters, we discuss the mechanism of quark pair production in this process. We first show how the gauge field explosive solution of Luscher and Schechter can be achieved by non-central conformal mapping from the O(4)-symmetric solution. Our main result is a new solution to the Dirac equation in real time in this configuration, obtained by the same inversion of the fermion O(4) zero mode. It explicitly shows how the quark acceleration occurs, starting from the spherically O(3) symmetric zero energy chiral quark state to the final spectrum of non-zero energies. The sphaleron-like clusters with any Chern-Simons number always produce NFLˉR{\rm N_F} {\bar {\bf L}}{\bf R} quarks, and the antisphaleron-like clusters the chirality opposite. The result are relevant for hadron-hadron and nucleus-nucleus collisions at large s\sqrt{s}, wherein such clusters can be produced

    Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run

    Get PDF
    Isolated spinning neutron stars, asymmetric with respect to their rotation axis, are expected to be sources of continuous gravitational waves. The most sensitive searches for these sources are based on accurate matched filtering techniques that assume the continuous wave to be phase locked with the pulsar beamed emission. While matched filtering maximizes the search sensitivity, a significant signal-to-noise ratio loss will happen in the case of a mismatch between the assumed and the true signal phase evolution. Narrowband algorithms allow for a small mismatch in the frequency and spin-down values of the pulsar while coherently integrating the entire dataset. In this paper, we describe a narrow-band search using LIGO O2 data for the continuous wave emission of 33 pulsars. No evidence of a continuous wave signal is found, and upper limits on the gravitational wave amplitude over the analyzed frequency and spin-down ranges are computed for each of the targets. In this search, we surpass the spin-down limit, namely, the maximum rotational energy loss due to gravitational waves emission for some of the pulsars already present in the LIGO O1 narrow-band search, such as J1400 − 6325, J1813 − 1246, J1833 − 1034, J1952 ĂŸ 3252, and for new targets such as J0940 − 5428 and J1747 − 2809. For J1400 − 6325, J1833 − 1034, and J1747 − 2809, this is the first time the spin-down limit is surpassed

    A survey of cost-sensitive decision tree induction algorithms

    Get PDF
    The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making. This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field

    All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run

    Get PDF
    We present the results of a search for long-duration gravitational-wave transients in the data from the Advanced LIGO second observation run; we search for gravitational-wave transients of 2–500 s duration in the 24–2048 Hz frequency band with minimal assumptions about signal properties such as waveform morphologies, polarization, sky location or time of occurrence. Signal families covered by these search algorithms include fallback accretion onto neutron stars, broadband chirps from innermost stable circular orbit waves around rotating black holes, eccentric inspiral-merger-ringdown compact binary coalescence waveforms, and other models. The second observation run totals about 118.3 days of coincident data between November 2016 and August 2017. We find no significant events within the parameter space that we searched, apart from the already-reported binary neutron star merger GW170817. We thus report sensitivity limits on the root-sum-square strain amplitude hrss at 50% efficiency. These sensitivity estimates are an improvement relative to the first observing run and also done with an enlarged set of gravitationalwave transient waveforms. Overall, the best search sensitivity is h50% rss ÂŒ 2.7 × 10−22 Hz−1=2 for a millisecond magnetar model. For eccentric compact binary coalescence signals, the search sensitivity reaches h50% rss ÂŒ 9.6 × 10−22 Hz−1=2
    • 

    corecore